

Collaborative Enhancement of Knowledge Graphs and Large Language Models

Yongrui Chen

Institute of Cognitive Science

Southeast University

Tutorial 1, CCKS 2024

Introduction of KG and LLM
KG for LLM
LLM for KG
Integration of LLM and KG
Conclusion & Future Work

What is Knowledge?

The information, understanding, and skills that you gain through education or experience.

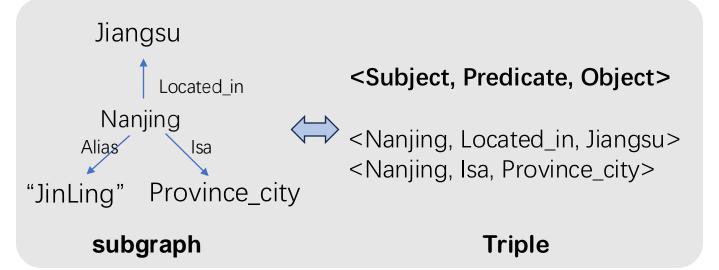
— Oxford Dictionary

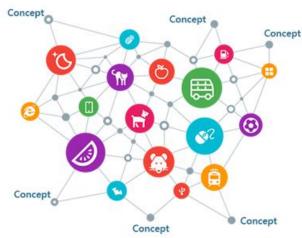
- The ability to learn and apply knowledge is the fundamental ability to determine whether artificial intelligence has human intelligence
- The following can be considered as knowledge
 - Fact knowledge: China is a country
 - **Description of information:** text or image
 - Skills obtained by practice: skill to open a bottle
- **Knowledge Base (KB):** a collection of knowledge, including documents, images, triples, rules or parameters of neural networks, etc.

Knowledge Graph

A knowledge graph (KG) is a data structure for representing knowledge using a graph

- Nodes in the graph can be either entities or literals
- Edges are relations between entities and entities or literals
- Semantics of KG is based on ontology languages such as $RDFS^1 \mbox{ or } OWL^2$





Knowledge Graph

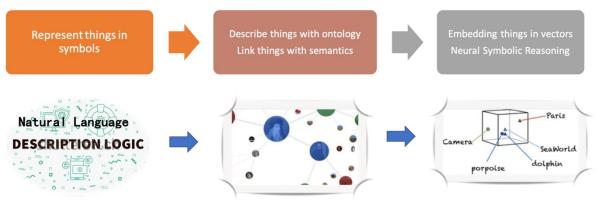
famous KGs

1. <u>https://www.w3.org/TR/rdf-schema/</u>

2. <u>https://www.w3.org/OWL/</u>

KG as Knowledge Base

KG as a World Model

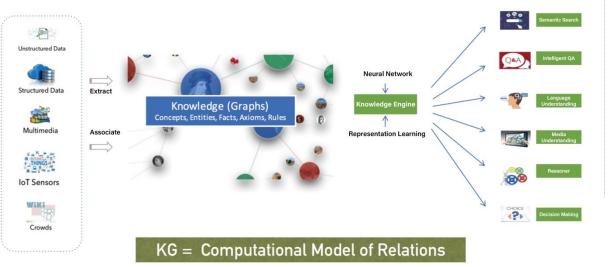


The Good Old Fashioned Al

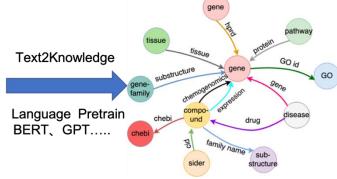
The Semantic Web & Linked Knowledge

The Knowledge Graph

Graph Structure as Knowledge Base

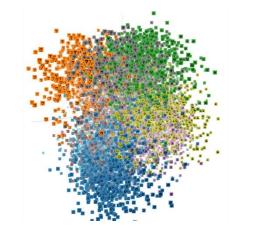


Text to Knowledge Graph

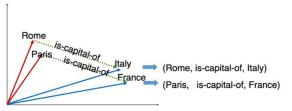


KG Embeddings as Knowledge Base

Embeddings : Distributed Vector Representation



- Text : Learn a vector of each word in a sentence
- · KG: Learn a vector for each entity or property
- Image/Video : Learn a vector for each visual object



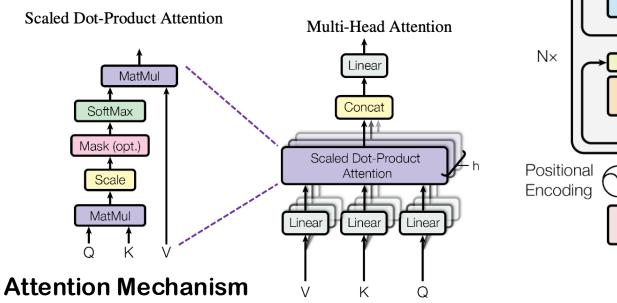
Rome - Italy Paris - France

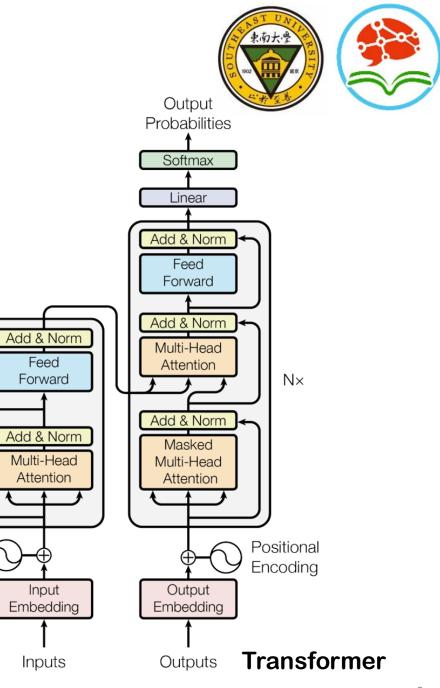
What is Language Model?

Calculate the probability of a word sequence: w_1, w_2, \ldots, w_n

 $P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2|w_1) \times ... \times P(w_n | w_1, ..., w_{n-1})$

- **Transformer**, a most popular neural network;
- Encoder Decoder architecture;
- Attention Mechanism;



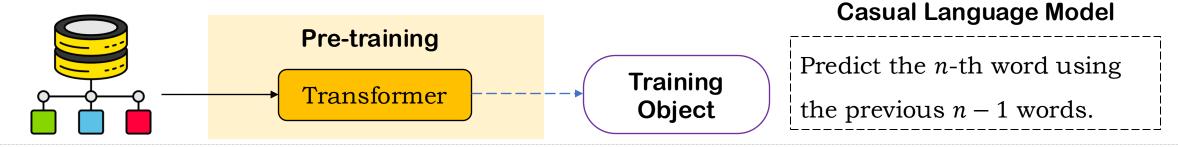


Pre-training & Large Language Model

Pre-training

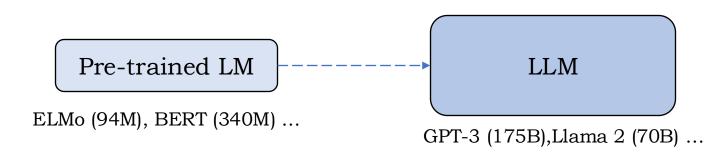
Train the model (Transformer) on a generic large-scale dataset to learn some fundamental,

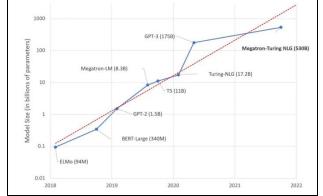
common features or patterns.



Large Language Model (LLM)

As the number of parameters gradually increases, when it reaches a certain scale (typically over one billion), it is referred to as an LLM.

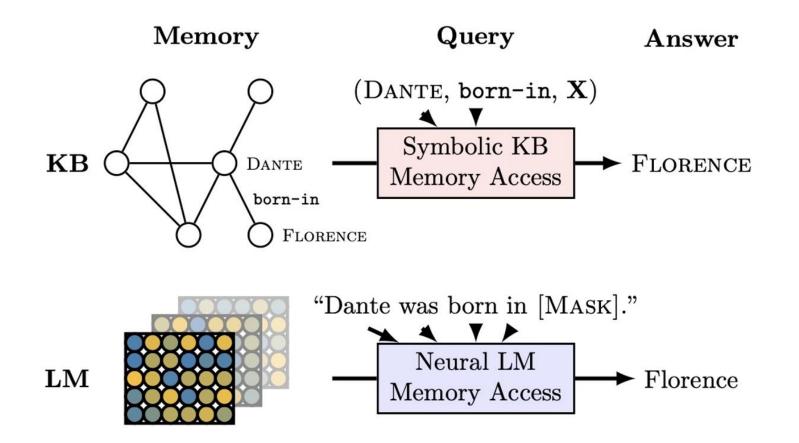




As the scale of model increases, the performance of the model significantly improves!

LLM as Knowledge Base

• An LLM is a parametric knowledge base



Fabio Petroni, et.al., Language Models as Knowledge Bases? EMNLP-IJCNLP, 2019.

KG vs LLM: Reasoning Capability Comparison

LLM Reasoning

- **Code Pre-training:** enhance LLM reasoning during training
- **Prompt Engineering:** eliciting LLM reasoning during inference

KG Reasoning

- Graph computing
- Rule-based reasoning
- Ontology reasoning
- Spatial-temporal reasoning
- KG embedding/GNN

LLM Reasoning

- zero-shot prompting
- Few-shot prompting
- CoT prompting
- Instruction

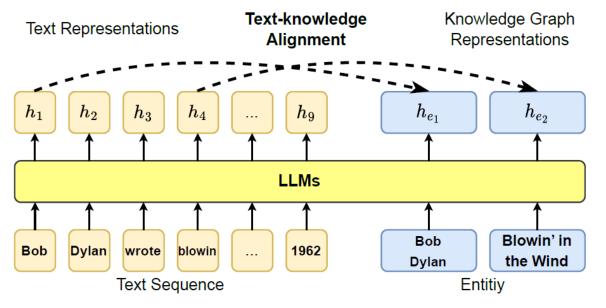
KG Reasoning

- Graph computing
- Rule-based reasoning
- Ontology reasoning
- Spatial-temporal reasoning
- KG embedding/GNN

Introduction of KG and LLM
KG for LLM
LLM for KG
Integration of LLM and KG
Conclusion & Future Work

KG for LLM: Pre-training

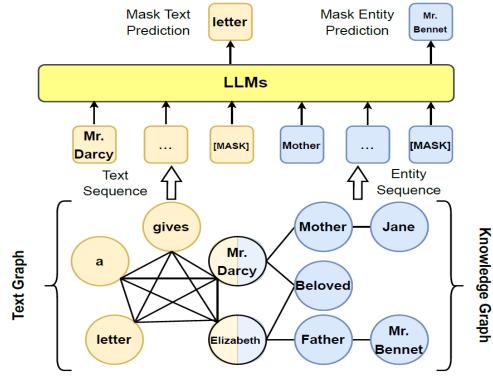
- Designing pre-training objective to incorporate KG components
- Integrate KG with text as LLM training input



Input Text: Bob Dylan wrote Blowin' in the Wind in 1962

Aligned Pre-training Object (ERNIE ...)

ERNIE: Enhanced language representation with informative entities, ACL 2019. CoLAKE: Contextualized language and knowledge embedding, 2020.

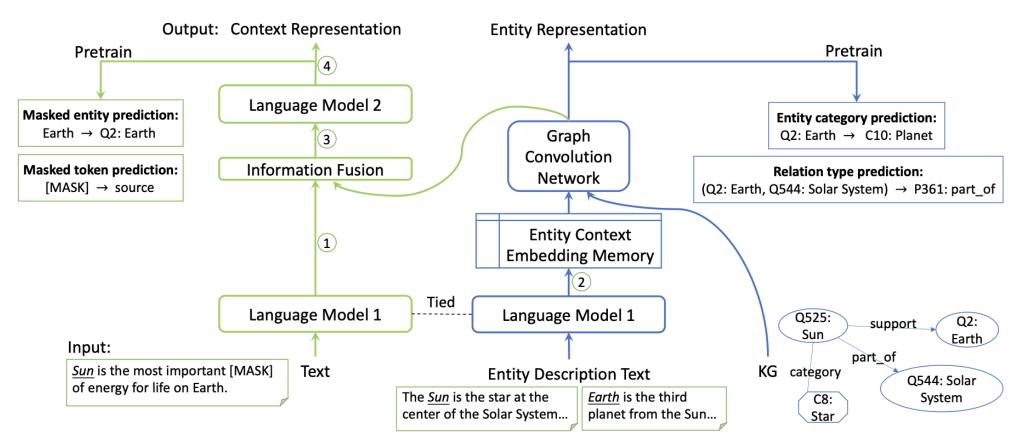


Input Text: Mr. Darcy gives Elizabeth a letter

Combined Training Input (CoLake...)

KG for LLM: Pre-training

• Integrating KGs into additional fusion modules

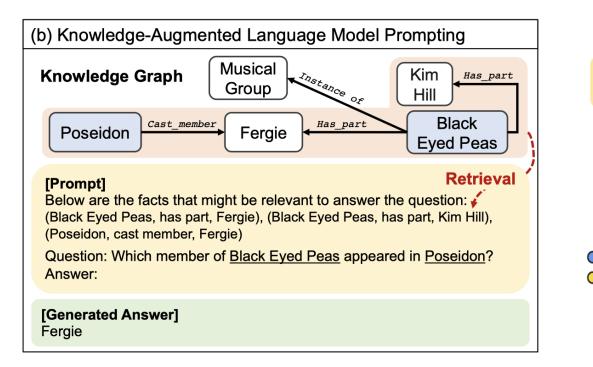


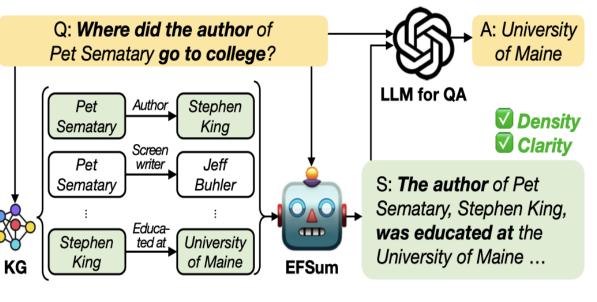
Fused module (JAKET ...)

JAKET: Joint Pre-training of Knowledge Graph and Language Understanding, AAAI 2022.

KG for LLM: KG as Prompt

• Knowledge graphs are directly utilized by LLMs as prompts without training





KAPING

Retrieve subgraph triples as prompt

EFSum

Summarize the related triples

Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering. ACL 2023 workshop Evidence-Focused Fact Summarization for Knowledge-Augmented Zero-Shot Question Answering. Preprint, 2024

KG for LLM: KG as Prompt

• Experimental results of KAPING

Table 1: Main results of language model prompting, where we report the generation accuracy. The number inside the parentheses in the first row denotes the parameter size of language models, and best scores are emphasized in bold.

Datasets	Methods	T5 (0.8B)	T5 (3B)	T5 (11B)	OPT (2.7B)	OPT (6.7B)	OPT (13B)	TO (3B)	TO (11B)	GPT-3 (6.7B)	GPT-3 (175B)	AlexaTM (20B)	Average
	No Knowledge	6.95	13.40	9.48	19.85	29.77	28.38	21.43	40.77	44.63	63.59	46.79	29.55
	Random Knowledge	21.55	19.15	17.57	28.07	31.73	33.31	32.62	51.20	51.01	65.87	57.37	37.22
WebQSP	Popular Knowledge	15.30	16.88	18.39	28.32	28.13	24.21	27.05	47.22	45.58	62.26	54.91	33.48
w/ Freeba	se Generated Knowledge	6.19	7.84	6.76	7.46	11.50	8.22	19.41	38.81	45.89	62.14	35.13	22.67
	KAPING (Ours)	34.70	25.41	24.91	41.09	43.93	40.20	52.28	62.85	60.37	73.89	67.67	47.94
	No Knowledge	10.30	18.42	15.21	23.94	33.77	32.40	24.56	44.20	48.50	67.60	42.41	32.85
	Random Knowledge	17.94	22.78	24.28	37.24	35.61	38.27	28.85	47.68	52.05	60.64	55.63	38.27
WebQSP	Popular Knowledge	15.35	20.80	20.74	30.83	30.01	27.83	24.83	48.02	47.41	63.37	53.92	34.83
w/ Wikida	ta Generated Knowledge	11.94	13.30	12.28	11.26	17.53	14.19	22.92	41.34	48.77	65.89	31.16	26.42
[KAPING (Ours)	23.67	40.38	35.47	49.52	53.34	51.57	49.86	58.73	60.44	69.58	65.04	50.69
L	No Knowledge	11.23	14.25	17.06	19.76	27.19	26.83	14.75	23.74	34.65	56.33	41.97	26.16
	Random Knowledge	17.59	18.19	18.83	28.11	26.58	28.36	16.10	26.15	32.98	51.56	46.02	28.22
Mintaka	Popular Knowledge	17.56	18.09	18.73	26.97	27.08	23.10	16.74	27.15	32.48	53.16	46.41	27.95
w/ Wikida	ta Generated Knowledge	13.61	14.61	14.29	11.87	14.96	16.24	14.46	23.13	33.12	55.65	34.58	22.41
	KAPING (Ours)	19.72	22.00	22.85	32.94	32.37	33.37	20.68	29.50	35.61	56.86	49.08	32.27

KG for LLM: KG as Prompt

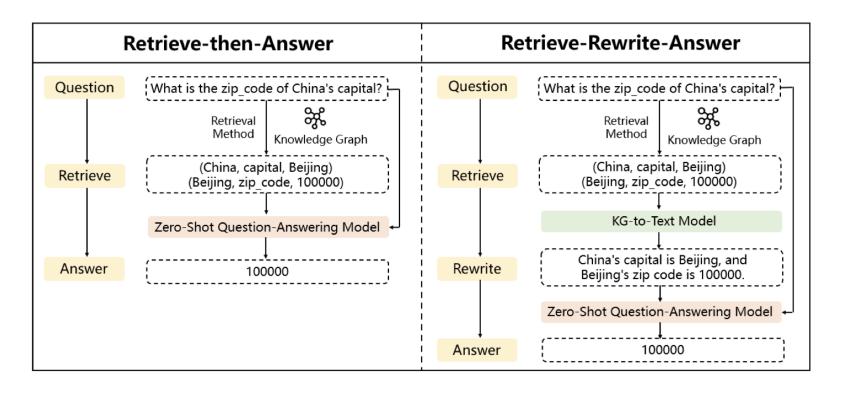
• Experimental results of EFSUM

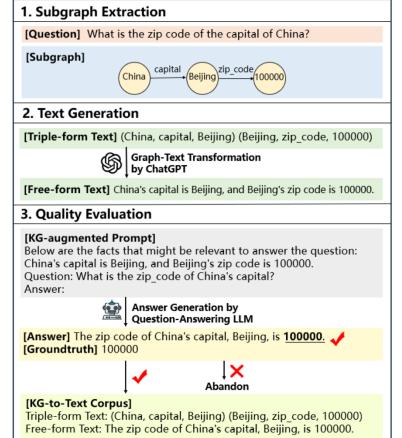
Deterate	Mathada	GP	T-3.5-tu	rbo	Fl	an-T5-X	L	Llan	na2-7B-0	Chat
Datasets	Methods	Random	Popular	MPNet	Random	Popular	MPNet	Random	Popular	MPNet
	No knowledge	0.506	0.506	0.506	0.409	0.409	0.409	0.539	0.539	0.539
	KAPING (Baek et al., 2023a)	0.441	0.437	0.538	0.297	0.329	0.439	0.476	0.490	0.519
	KG2Text (Ribeiro et al., 2021)	0.469	0.468	0.476	0.317	0.276	0.321	0.465	0.451	0.481
WebQSP	Rewrite (Wu et al., 2023)	0.473	0.445	0.525	0.323	0.348	0.431	0.458	0.439	<u>0.511</u>
	EFSUM _{prompt} (Ours)	0.542	<u>0.534</u>	<u>0.538</u>	<u>0.443</u>	<u>0.442</u>	<u>0.468</u>	0.477	0.472	0.491
	EFSUM _{distill} (Ours)	<u>0.475</u>	0.539	0.569	0.500	0.505	0.500	0.457	<u>0.488</u>	0.497
	No knowledge	0.540	0.540	0.540	0.228	0.228	0.228	0.440	0.440	0.440
	KAPING (Baek et al., 2023a)	0.553	0.516	0.539	0.201	0.198	0.279	0.417	0.398	0.407
	KG2Text (Ribeiro et al., 2021)	0.505	0.500	0.492	0.220	<u>0.235</u>	0.234	0.421	0.389	0.378
Mintaka	Rewrite (Wu et al., 2023)	0.527	0.524	<u>0.515</u>	0.230	0.224	0.288	0.393	0.374	0.386
	EFSUM _{prompt} (Ours)	0.454	0.492	0.496	0.213	0.215	<u>0.321</u>	0.390	0.392	0.418
	EFSUM _{distill} (Ours)	0.427	0.425	0.474	0.292	0.243	0.338	0.397	<u>0.393</u>	0.406

Table 2: QA accuracy of the LLMs based on various fact verbalization, with different fact retrieval strategies (i.e., random facts, popular facts, and question-relevant facts). We limit the maximum token length of contextual knowledge to L = 400. The best and second-best results are in **bold** and <u>underlined</u>, respectively.

KG for LLM: KG-to-text Prompt

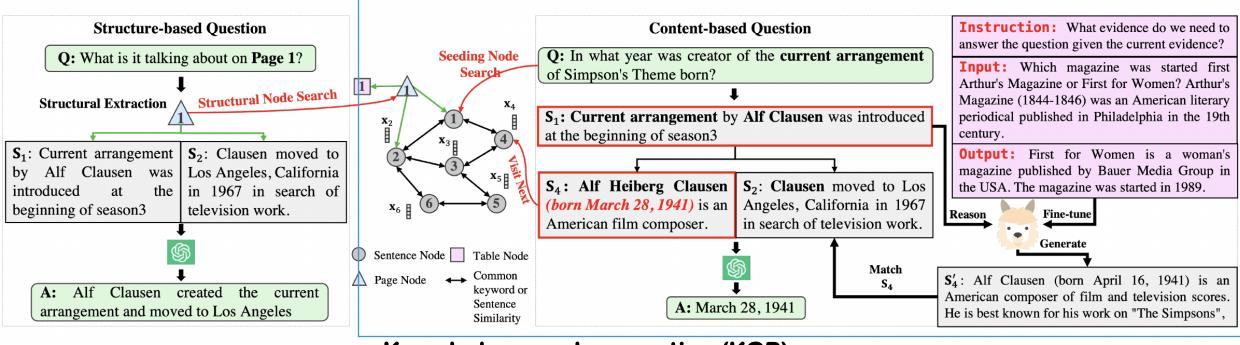
• Transform KG knowledge into well-textualized statements most informative





KG for LLM: Enhanced LLM Reasoning

• Knowledge graph prompting for LLM reasoning on multi-documents



Knowledge graph prompting (KGP)

For questions on document content, concatenate it with the currently retrieved context and prompt the LLM to generate the next evidence to answer the question.

KG for LLM: Enhanced LLM Reasoning

• Experimental results of KGP

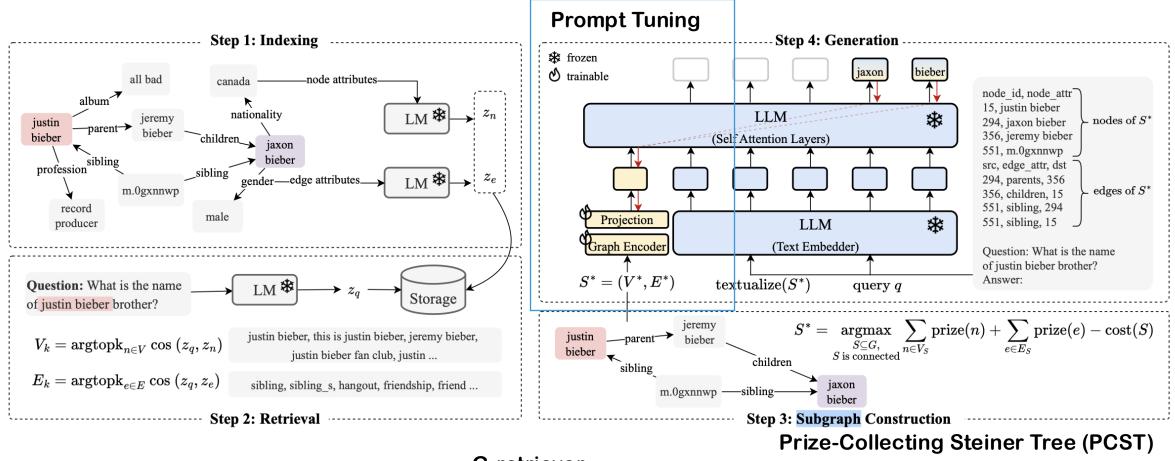
Method	H	otpotQ	A		IIRC		2V	VikiMQ	QA	N	IuSiQu	le	PDF-T	R	ank
Memou	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Struct-EM	w PDF-T	w/o PDF-T
None	41.80	19.00	30.50	19.50	8.60	13.17	44.40	18.60	25.07	30.40	4.60	10.58	0.00	8.53	9.00
KNN	71.57	40.73	57.97	43.82	25.15	37.24	52.40	31.20	42.13	44.70	18.86	30.04	_	7.00	7.33
TF-IDF	76.64	<u>45.97</u>	64.64	47.47	27.22	40.80	58.40	34.60	44.50	44.40	21.59	32.50	_	4.85	5.00
BM25	71.95	41.46	59.73	41.93	23.48	35.55	55.80	30.80	40.55	44.47	21.11	31.15	_	6.92	7.25
DPR	73.43	43.61	62.11	48.11	26.89	41.85	62.40	35.60	51.10	44.27	20.32	31.64	_	5.31	5.50
MDR	75.30	45.55	<u>65.16</u>	50.84	27.52	43.47	<u>63.00</u>	36.00	<u>52.44</u>	<u>48.39</u>	23.49	<u>37.03</u>	_	<u>3.07</u>	3.08
IRCoT	74.36	45.29	64.12	49.78	27.73	41.65	61.81	37.75	50.17	45.14	22.46	34.21	—	4.00	4.08
KGP-T5	76.53	46.51	66.77	48.28	26.94	41.54	63.50	39.80	53.50	50.92	27.90	41.19	67.00	2.69	2.75
Golden	82.19	50.20	71.06	62.68	35.64	54.76	72.60	40.20	59.69	57.00	30.60	47.75	100.00	1.00	1.00

Table 1: MD-QA Performance (%) of different baselines. The best and runner-up are in bold and underlined. None: no passages but only the question is provided. Golden: supporting facts are provided along with the question. PDF-T stands for PDFTriage.

Knowledge graph prompting (KGP)

KG for LLM: Enhanced RAG

• KG can help LLMs reduce hallucinations with Retrieval Augment Generation (RAG).

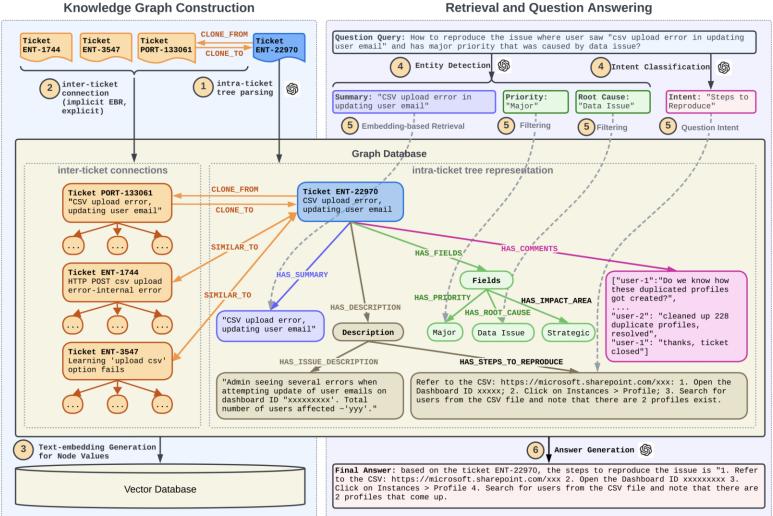


G-retriever

G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering . Preprint 2024.

KG for LLM: Enhanced RAG

- RAG on KG is more likely to capture intra-question structure and interquestion relationships
- Build an KG from historical a) records.
- Parsing consumer queries to b) identify named entities and intents. then navigates within the KG to identify related sub-graphs for generating answers



Retrieval and Question Answering

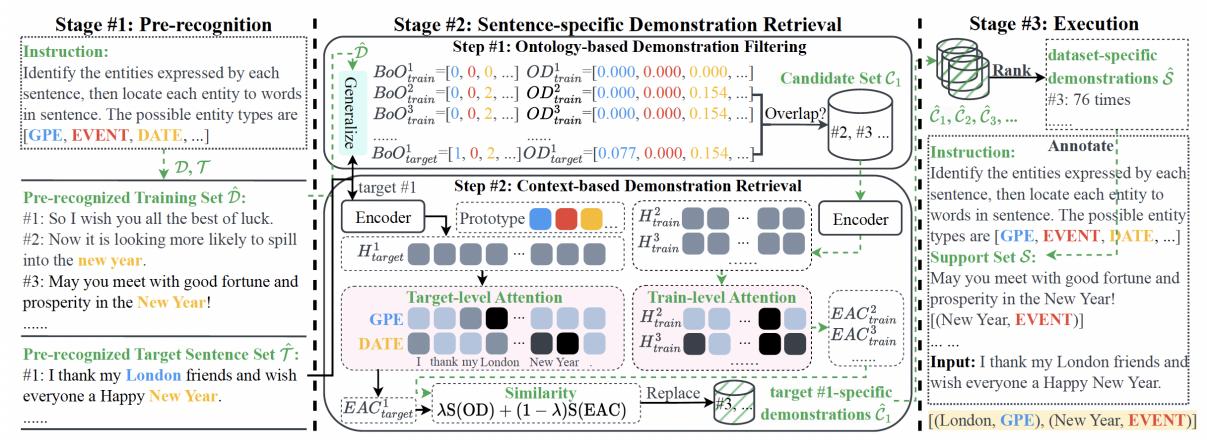
Retrieval-augmented generation with knowledge graphs for customer service question answering. SIGIR 2024.

KG for LLM: Enhanced ICL

- KG can help retrieve high-correlated demonstrations during inference for In-Context

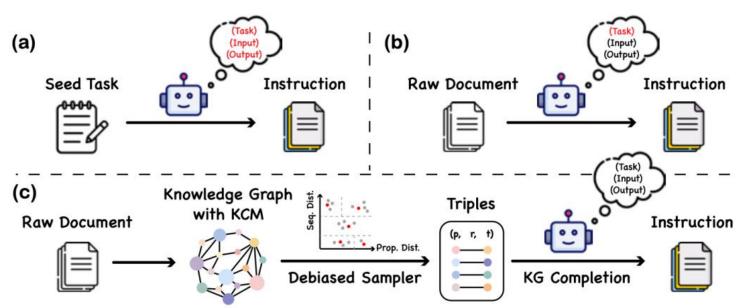
Learning (ICL).

ConsistNER



KG for LLM: Instruction Construction

• KG can guide the construction of instruction datasets.



Using an LLM cooperated with KG completion tasks, to generate factual, logical, and diverse instructions.

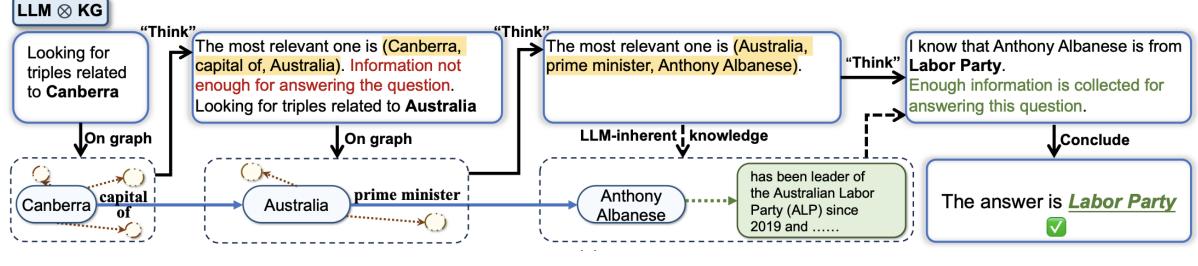
InstructProtein: Aligning Human and Protein Language via Knowledge Instruction. ACL 2024

MRCPGVSLV	vg family	KCM → leptin						
MRCPGVSLV	function	Triple → hormone activity						
KG Co	mpletion 🗍 💽							
? r t Head Prediction	Instruction: I would like a protein. Input: It enables hormone activity. Output: MHWGTLC							
h r? Tail Prediction	Instruction: I wor Input: MHWGTLC. Output: Hormone							
h r ? Triple Classification	Input: None Output: Since it i	VGTLC enable hormone activity? s in the leptin family, er is yes.						

Knowledge to Instruction

KG for LLM: Knowledge Fusion

• LLM provides internal knowledge through its parameters, while the KG provides external knowledge.



Think-on-Graph (ToG)

Think-on-graph: Deep and responsible reasoning of large language model with knowledge graph. ICLR, 2024.

KG for LLM: Knowledge Fusion

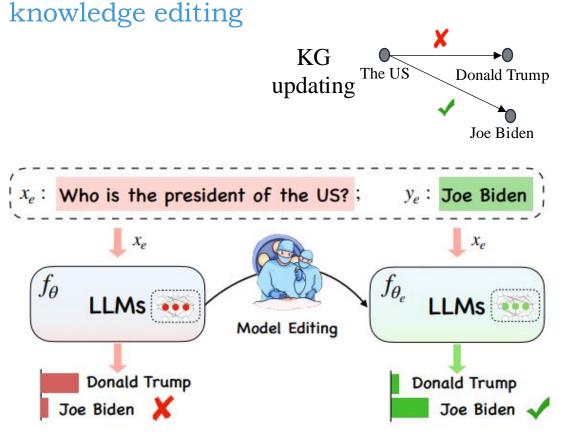
• Experimental results of TOG

Method		Multi	-Hop KBQA	A	Single-Hop KBQA	Open-Domain QA	S	lot Filling	Fact Checking
	CWQ	WebQSP	GrailQA	QALD10-en	Simple Questions	WebQuestions	T-REx	Zero-Shot RE	Creak
				Without	external knowledge				
IO prompt w/ChatGPT	37.6	63.3	29.4	42.0	20.0	48.7	33.6	27.7	89.7
CoT w/ChatGPT	38.8	62.2	28.1	42.9	20.3	48.5	32.0	28.8	90.1
SC w/ChatGPT	45.4	61.1	29.6	45.3	18.9	50.3	41.8	45.4	90.8
				With ex	ternal knowledge				
Prior FT SOTA	70.4^{lpha}	82.1 ^{<i>β</i>}	75.4^{γ}	45.4^{δ}	85.8^{ϵ}	56.3 [¢]	87.7^{η}	74.6^{θ}	88.2^{ι}
Prior Prompting SOTA	-	74.4 $^{\kappa}$	53.2^{κ}	-	-	-	-	-	-
ToG-R (Ours) w/ChatGPT	58.9	75.8	56.4	48.6	45.4	53.2	75.3	86.5	93.8
ToG (Ours) w/ChatGPT	57.1	76.2	68.7	50.2	53.6	54.5	76.8	88.0	91.2
ToG-R (Ours) w/GPT-4	69.5	81.9	80.3	54.7	58.6	57.1	75.5	86.9	95.4
ToG (Ours) w/GPT-4	67.6	82.6	81.4	53.8	66.7	57.9	77.1	88.3	95.6

Think-on-graph: Deep and responsible reasoning of large language model with knowledge graph. ICLR, 2024.

KG for LLM: Knowledge Editing

• Extracting updating knowledge from KG as In-Context Learning examples for



EasyEdit

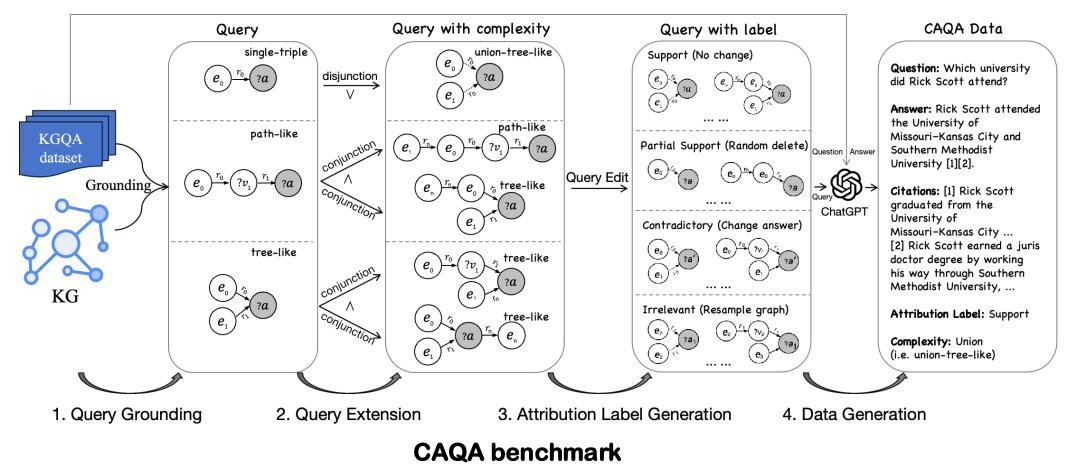
Editing Large Language Models: Problems, Methods, and Opportunities. EMNLP 2023. Can We Edit Factual Knowledge by In-Context Learning? EMNLP 2023.

Мо	del Input
Cor	ntext C = k demonstrations: $\{c_1, \dots c_k\}$
	Example for Copying
c _I	New Fact: The president of US is Obama. Biden. Q: The president of US is? A: Biden.
	Example for Updating
<i>c</i> ₂	New Fact: Einstein specialized in physics.math. Q: Which subject did Einstein study? A: math.
	Example for Retaining
<i>C</i> ₃	New Fact: Messi plays soccer.tennis. Q: Who produced Google? A: Larry Page.
:	•••
f :	New fact: Paris is the capital of France. Japan.
<i>x:</i>	Q: Which city is the capital of Japan? A:
Мо	del Output
<i>y:</i>	Paris.

In-Context Knowledge Editing (IKE)

KG for LLM: Knowledge Validation

• Evaluating the attribution: verifying whether the generated answer is fully supported by the citation.



Benchmarking Large Language Models in Complex Question Answering Attribution using Knowledge Graphs. Preprint. 2024

KG for LLM: Knowledge Validation

• Experimental results on CAQA dataset.

Evaluators (Size)			CAQA		
	Sup.	Ins.	Con.	Irr.	Overall
LLaMA-2 (7B)	0.423	0.121	0.057	0.170	0.279
LLaMA-2-chat (7B)	0.462	0.158	0.058	0.053	0.183
Mistral (7B)	0.456	0.178	0.191	0.153	0.305
Mistral-Instruct (7B)	0.591	0.189	0.159	0.016	0.324
Vicuna (7B)	0.437	0.007	0.001	0.000	0.111
LLaMA-2 (13B)	0.418	0.164	0.161	0.125	0.279
LLaMA-2-chat (13B)	0.469	0.171	0.173	0.103	0.224
Vicuna (13B)	0.485	0.049	0.000	0.000	0.143
GPT-3.5-turbo	0.592	0.150	0.616	0.497	0.506
GPT-4	0.829	0.430	0.776	0.628	0.687
AUTOIS (11B)	0.609	-	-	-	0.152
AttrScore (13B)	0.667	-	0.611	-	0.320
LLaMA-2 (7B)	0.922	0.897	0.944	0.933	0.926
LLaMA-2-chat (7B)	0.925	0.903	0.943	0.927	0.930
Mistral (7B)	0.927	0.908	0.944	0.849	0.882
Vicuna (7B)	0.937	0.907	0.940	0.906	0.932
LLaMA-2 (13B)	0.929	0.907	0.938	0.923	0.925
Vicuna (13B)	0.942	0.923	0.939	0.923	0.933

Evaluators (Size)		CA	QA	
(2)	S .	C.	I.	U.
LLaMA-2 (7B)	0.286	0.249	0.282	0.260
LLaMA-2-chat (7B)	0.281	0.235	0.291	0.290
Mistral (7B)	0.315	0.281	0.294	0.265
Mistral-Instruct (7B)	0.339	0.278	0.300	0.271
Vicuna (7B)	0.341	0.268	0.290	0.285
LLaMA-2 (13B)	0.314	0.270	0.303	0.253
LLaMA-2-chat (13B)	0.338	0.279	0.305	0.278
Vicuna (13B)	0.339	0.257	0.296	0.288
GPT-3.5	0.551	0.323	0.346	0.525
GPT-4	0.743	0.416	0.501	0.787
AUTOIS (11B)	0.403	0.171	0.272	0.281
ATTRSCORE (13B)	0.473	0.333	0.308	0.303
LLaMA-2 (7B)	0.923	0.815	0.931	0.921
LLaMA-2-chat (7B)	0.935	0.820	0.930	0.924
Mistral (7B)	0.935	0.831	0.921	0.905
Vicuna (7B)	0.956	0.823	0.936	0.939
LLaMA-2 (13B)	0.954	0.824	0.936	0.939
Vicuna (13B)	0.950	0.847	0.935	0.940

Table 5: The performance of the different attribution evaluators on our CAQA benchmark. Evaluators of the first (resp. second) part follow the zero-shot (resp. fine-tuning) setting.

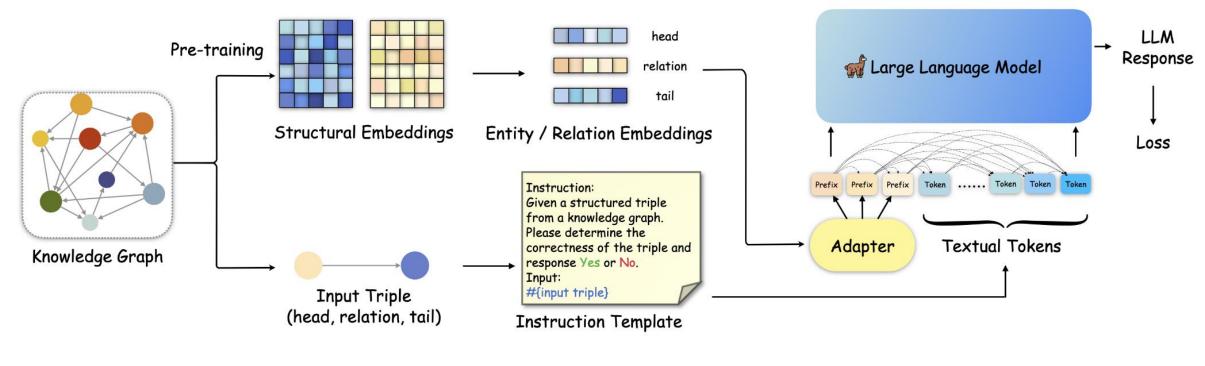
Table 6: Performance of all evaluators on various level of attribution complexity. Evaluators of the first (resp. second) part follow the zero-shot (resp. fine-tuning) setting.

Introduction of KG and LLM
KG for LLM
LLM for KG
Integration of LLM and KG

5. Conclusion & Future Work

LLM for KG: KG Completion

• Knowledge Prefix Adapter: structure-aware reasoning with structure embedding.



KoPA

Making Large Language Models Perform Better in Knowledge Graph Completion. Preprint 2024.

LLM for KG: KG Completion

• Experimental results of CAQA dataset.

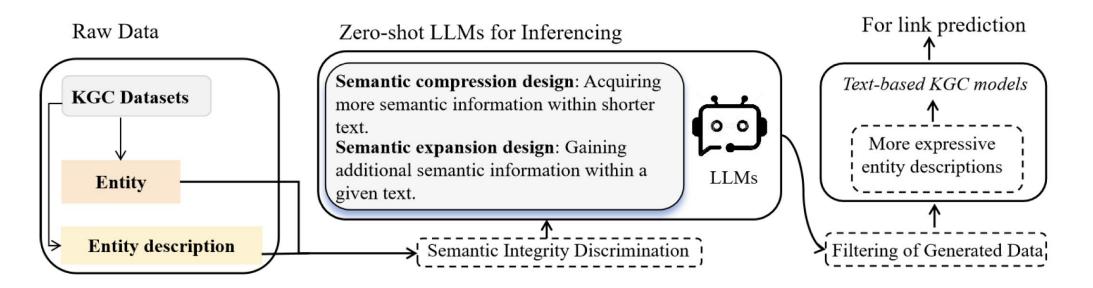
	Model		UM	ILS			CoD	eX-S			FB15k	K-237N	
		Acc	Р	R	F1	Acc	P	R	F1	Acc	P	R	F1
	TransE [3]	84.49	86.53	81.69	84.04	72.07	71.91	72.42	72.17	69.71	70.80	67.11	68.91
Embodding bood	DistMult [38]	86.38	87.06	86.53	86.79	66.79	69.67	59.46	64.16	58.66	58.98	56.84	57.90
Embedding-based	ComplEx [34]	90.77	89.92	91.83	90.87	67.64	67.84	67.06	67.45	65.70	66.46	63.38	64.88
	RotatE [31]	<u>92.05</u>	90.17	94.41	<u>92.23</u>	75.68	75.66	75.71	75.69	68.46	69.24	66.41	67.80
PLM-based	KG-BERT [40]	77.30	70.96	92.43	80.28	77.30	70.96	92.43	80.28	56.02	53.47	97.62	67.84
PLM-based	PKGC [21]	-	-	-	-	-	-	-	-	<u>79.60</u>	-	-	79.50
	Zero-shot(Alpaca)	52.64	51.55	87.69	64.91	50.62	50.31	99.83	66.91	56.06	53.32	97.37	68.91
	Zero-shot(GPT-3.5)	67.58	88.04	40.71	55.67	54.68	69.13	16.94	27.21	60.15	86.62	24.01	37.59
LLM-based	ICL(1-shot)	50.37	50.25	75.34	60.29	49.86	49.86	50.59	50.17	54.54	53.67	66.35	59.34
Training-free	ICL(2-shot)	53.78	52.47	80.18	63.43	52.95	51.54	98.85	67.75	57.81	56.22	70.56	62.58
	ICL(4-shot)	53.18	52.26	73.22	60.99	51.14	50.58	99.83	67.14	59.29	57.49	71.37	63.68
	ICL(8-shot)	55.52	55.85	52.65	54.21	50.62	50.31	99.83	66.91	59.23	57.23	73.02	64.17
	KG-LLaMA [41]	85.77	87.84	83.05	85.38	79.43	78.67	80.74	79.69	74.81	67.37	96.23	79.25
LLM-based	KG-Alpaca [41]	86.01	94.91	76.10	84.46	80.25	79.38	81.73	80.54	69.91	62.71	98.28	76.56
Fine-tuning	Vanilla IT	86.91	95.18	77.76	85.59	81.18	77.01	88.89	82.52	73.50	65.87	97.53	78.63
	Structure-aware IT	89.93	93.27	86.08	89.54	<u>81.27</u>	77.14	88.40	<u>82.58</u>	76.42	69.56	93.95	<u>79.94</u>
Ko	KoPA		90.85	94.70	92.70	82.74	77.91	91.41	84.11	77.65	70.81	94.09	80.81

Making Large Language Models Perform Better in Knowledge Graph Completion. Preprint 2024.

LLM for KG: KG Completion

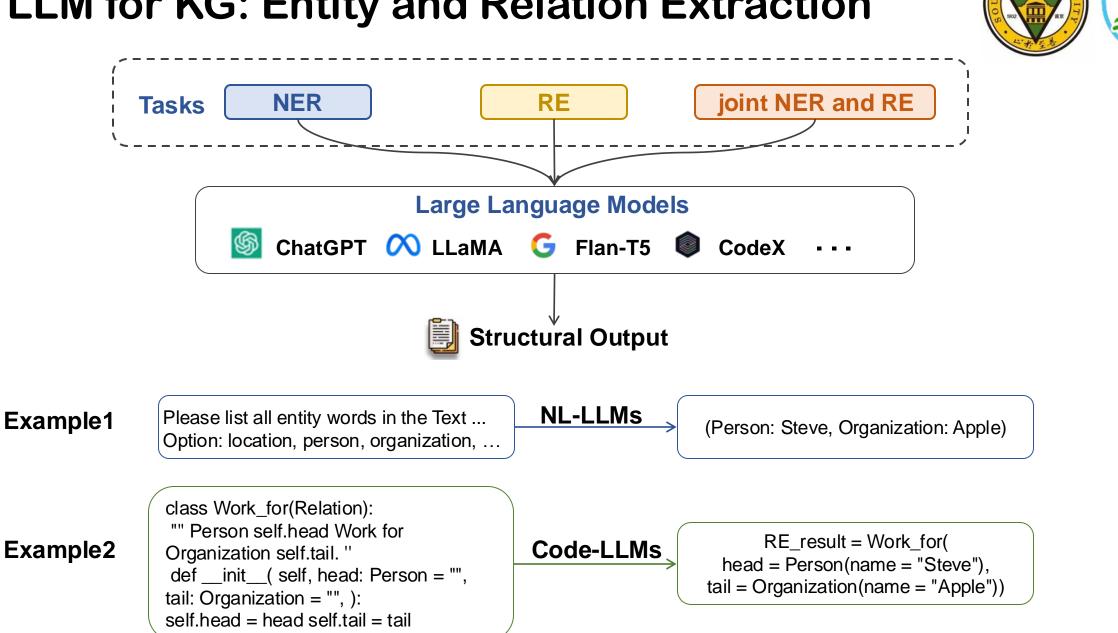
• Does the texts optimized by LLMs are more effective for text-based KGC models?

LLMs can add or remove content from entity descriptions.



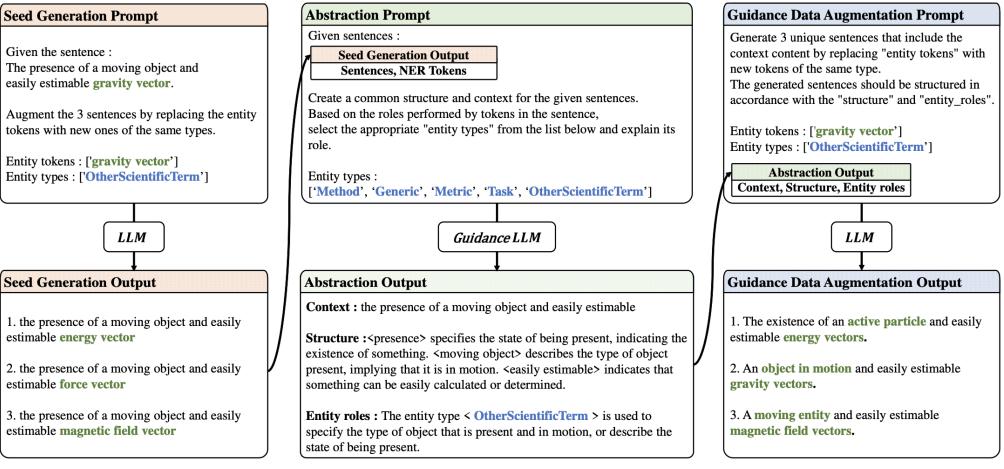
Constrained Prompts for KGC (CP-KGC)

LLM for KG: Entity and Relation Extraction



LLM for KG: Named Entity Recognition

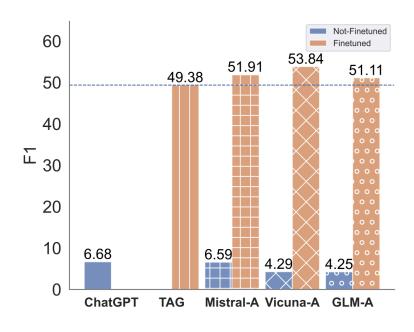
• LLM can perform guidance data augmentation for NER tasks.

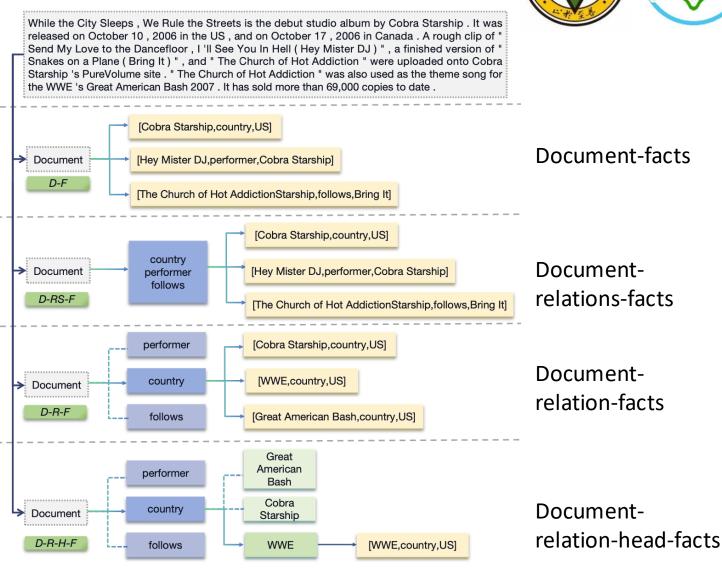


Guidance LLM Data Augmentation

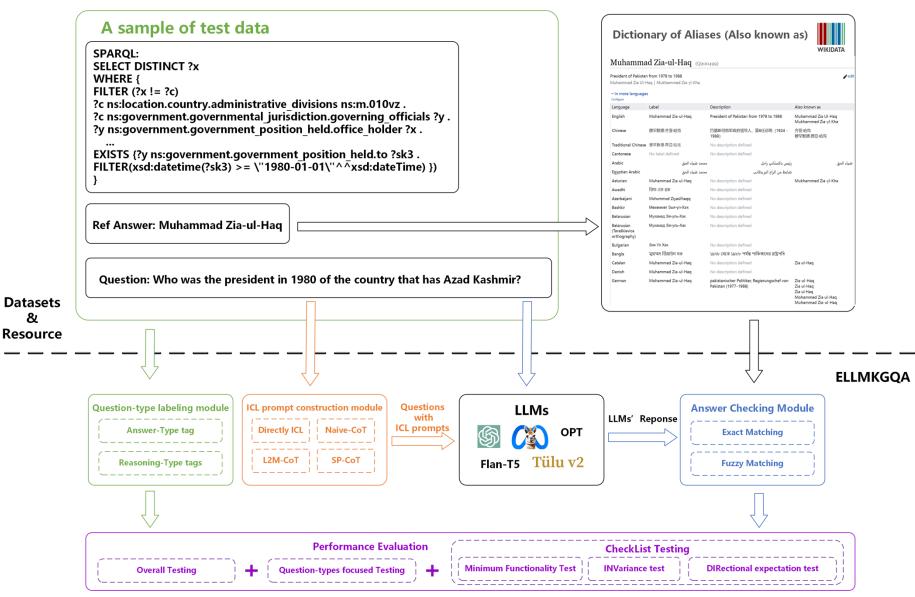
LLM for KG: Relation Extraction

- Exploring LLM on different RE paradigms
- RHF (Relation-Head-Facts).





LLM for KG: KBQA



ELLMKGQA framework:

The Question-type Labeling Module

identifies the answer type of the input question and the reasoning type involved in answering the question (based on the **question text**, **reference answer**, and corresponding **SPARQL query**).

The ICL Prompt Construction Module converts the input question into various inquiry forms with different contextual learning strategies

QA The Answer Checking Module

determines whether the LLM's response includes the correct answer to the input question by utilizing a combination of exact matching and fuzzy matching methods (employing an alias dictionary from **Wikidata** in exact matching to reduce false negatives).

LLM for KG: KBQA

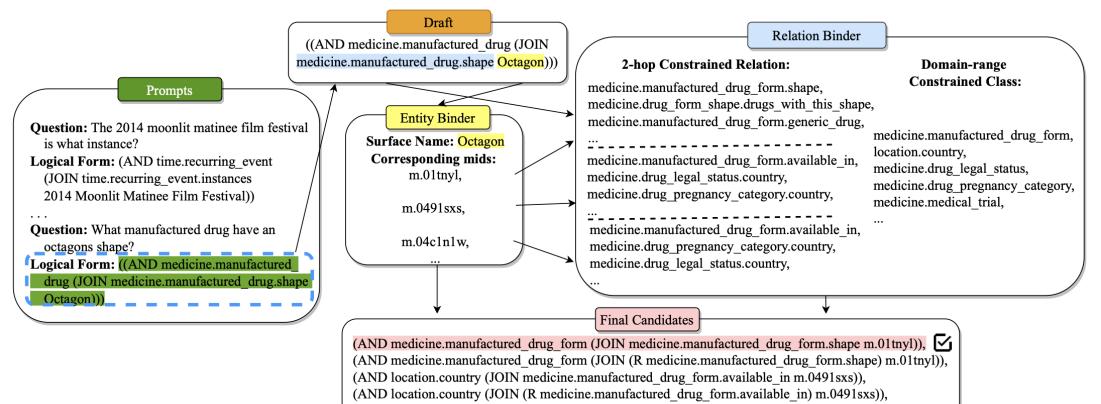
• Experimental results of LLM KBQA

atasets	KQApro	LC-quad2.0	WQSP	CWQ	GrailQA	GraphQuestions
	Acc	F1	Acc	Acc	Acc	F1
OTA(supervised)	95.32 ³	83.45 ⁴	82.10 Yu et al. (2022)	72.20 Hu et al. (2022)	76.31	31.8 Gu and Su (2022)
OTA(unsupervised)	94.20 Nie et al. (2022)	2	62.98 Ye et al. (2022)	-	-	<u>~</u>
LAN-T5-XXL	37.27	30.14	59.87	46.69	29.02	32.27
LaMA2-7B	49.78	50.85	82.39	63.04	46.74	61.01
LaMA2-7B-Direct	44.79	44.88	69.16	55.49	38.46	45.92
LaMA2-7B-Naive	50.59 ↑	44.86	73.36	58.24	40.47	50.98
LaMA2-7B-L2M	47.59	40.17	64.39	54.27	35.25	43.91
LaMA2-7B-SP	45.53	41.22	58.18	53.98	33.79	40.70
LaMA2-13B	48.42	48.92	80.66	59.14	45.22	61.18
LaMA2-70B	51.82	51.83	85.81	63.85	48.88	63.15
LaMA3-8B	49.08	51.51	84.29	62.91	45.53	62.42
LaMA3-8B-Direct	41.82	40.90	76.12	52.79	34.11	49.85
LaMA3-8B-Naive	50.50 ↑	51.30	69.73	58.12	38.07	53.54
LaMA3-8B-L2M	18.95	25.58	56.79	43.23	26.07	39.51
LaMA3-8B-SP	39.68	41.59	67.51	51.04	31.70	44.41
LaMA3-70B	54.43	60.85	86.32	68.68	51.79	69.25
LaMA3-70B-Direct	42.36	45.28	76.51	57.83	35.75	49.15
LaMA3-70B-Naive	57.55 ↑	61.13 ↑	84.72	73.30 ↑	50.94	65.57
LaMA3-70B-L2M	42.36	45.28	76.51	57.83	35.75	49.15
LaMA3-70B-SP	44.81	47.74	78.68	56.60	36.13	51.70
PT-4	50.19	54.53	83.49	65.57	43.96	60.38
PT-4-Direct	41.60	43.58	77.74	54.06	35.28	48.49
PT-4-Naive	46.42	49.72	74.15	60.57	37.26	49.53
PT-4-L2M	50.09	51.32	77.74	64.34	42.92	51.51
PT-4-SP	50.00	49.91	78.30	62.17	42.08	52.55
PT-40	56.98	61.51	85.85	74.06	53.96	67.17
PT-40-Direct	51.42	55.57	83.96	64.62	41.79	42.92
PT-40-Naive	48.49	53.40	79.43	61.79	38.77	49.81
						43.49
						46.51
PT-4o-L2M PT-4-SP	43.77 46.60	47.74 49.53	71.32 72.26	59.34 58.77	31.98 36.98	

LLM for KG: KBQA

• LLMs help generate logical forms as the draft for a specific question by

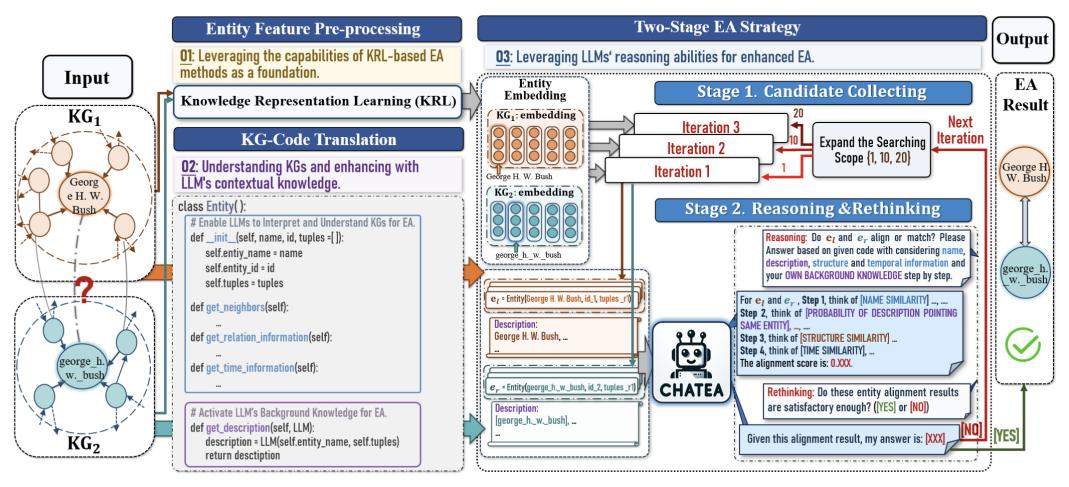
imitating a few demonstrations.



KB-Binder

LLM for KG: Entity Alignment

• Leverage LLM to aligned the entities from two different KGs.



Chat Entity Alignment (ChatEA)

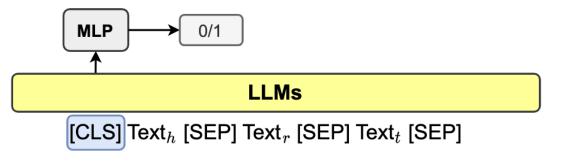
Unlocking the Power of Large Language Models for Entity Alignment , ACL 2024

LLM for KG: KG Reasoning

• By leveraging the context encoding capability of LLMs, the representation of the knowledge graph is enhanced using textual information from the knowledge graph.

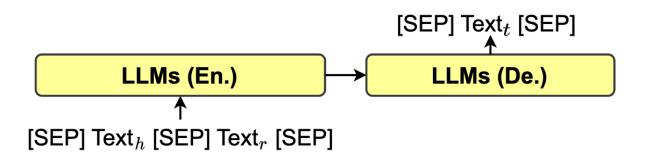
Discriminative Methods:

• Encoder-only PLMs (e.g., BERT)



Generative Methods:

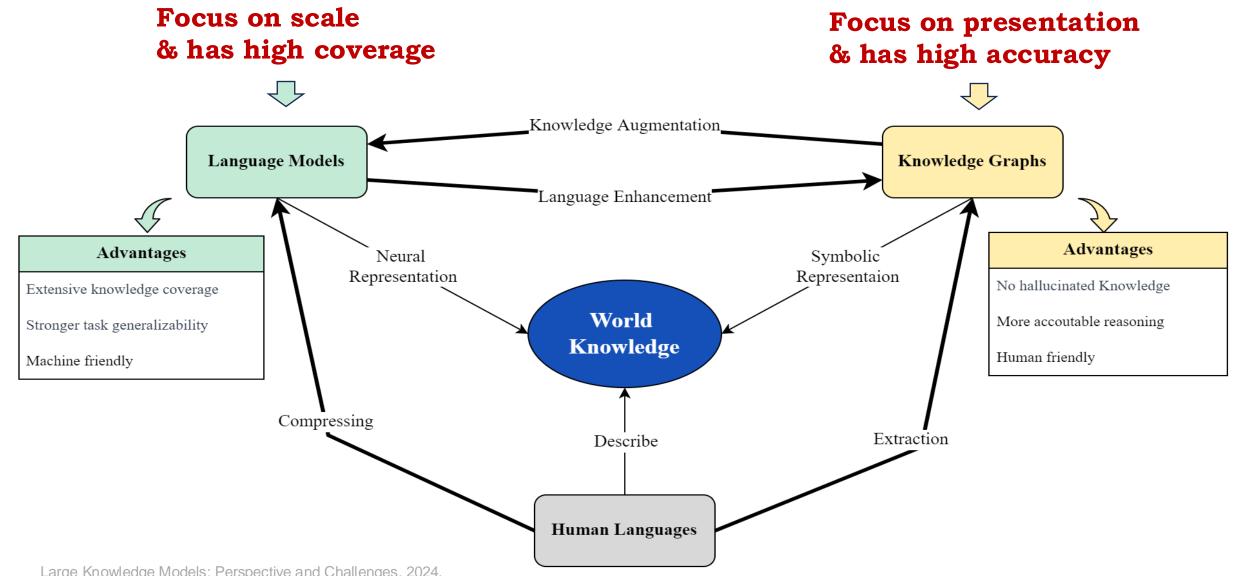
Encoder-decoder or decoder-only PLMs



Unifying Large Language Models and Knowledge Graphs: A Roadmap. IEEE TKDE 2024

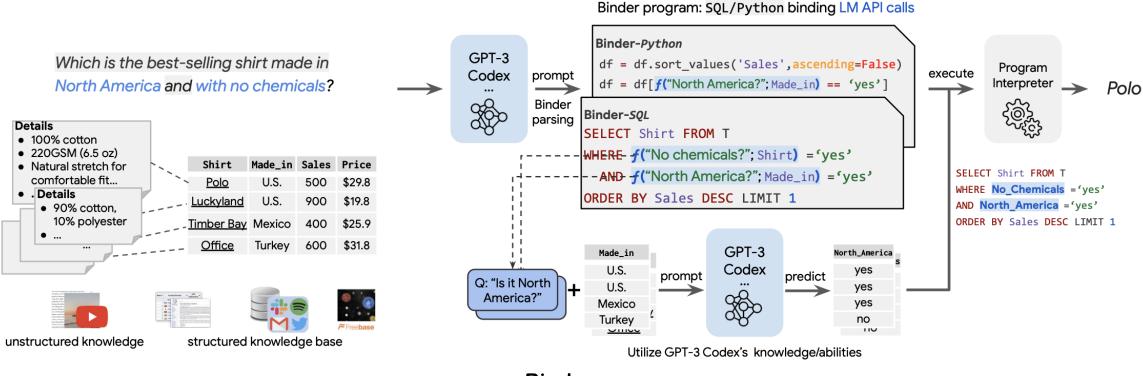
Introduction of KG & LLM
KG for LLM
LLM for KG
Integration of LLM & KG
Conclusion & Future Work

How do KG and LLM collaborate?



KG x LLM: Neural-symbolic Framework

- Binding a unified API of LLM functionalities to a programming language (e.g., SQL, Python, SPARQL ...) to extend its grammar coverage and thus tackle more diverse questions.

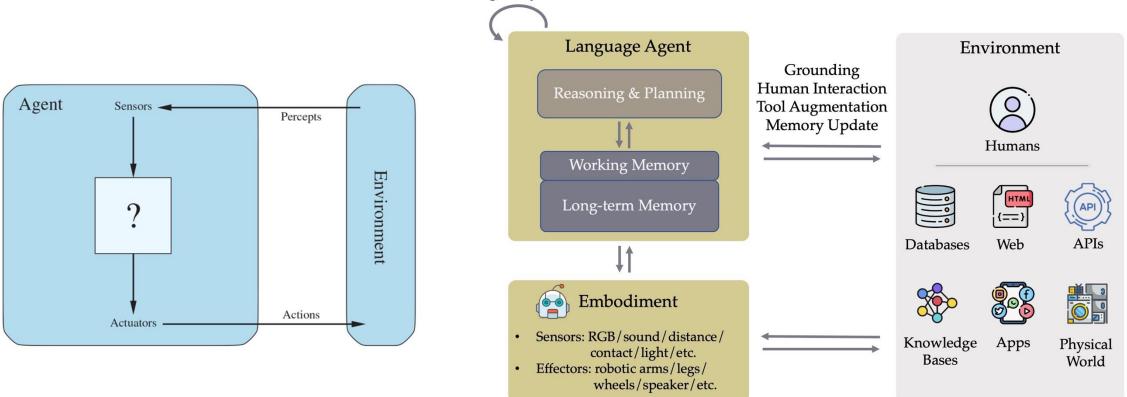


Binder

KG x LLM: Language Agent

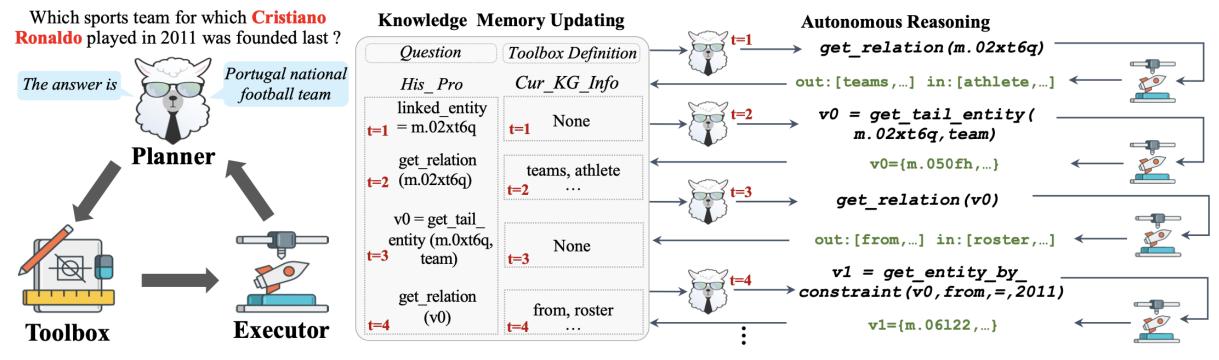
 Contemporary agents use language for their thought process, which makes it much easier to incorporate heterogeneous external percepts and do multi-step (speculative) planning and reasoning, all in a non-programmed and explicit way.

Multi-agent Systems



KG x LLM: KG Agent

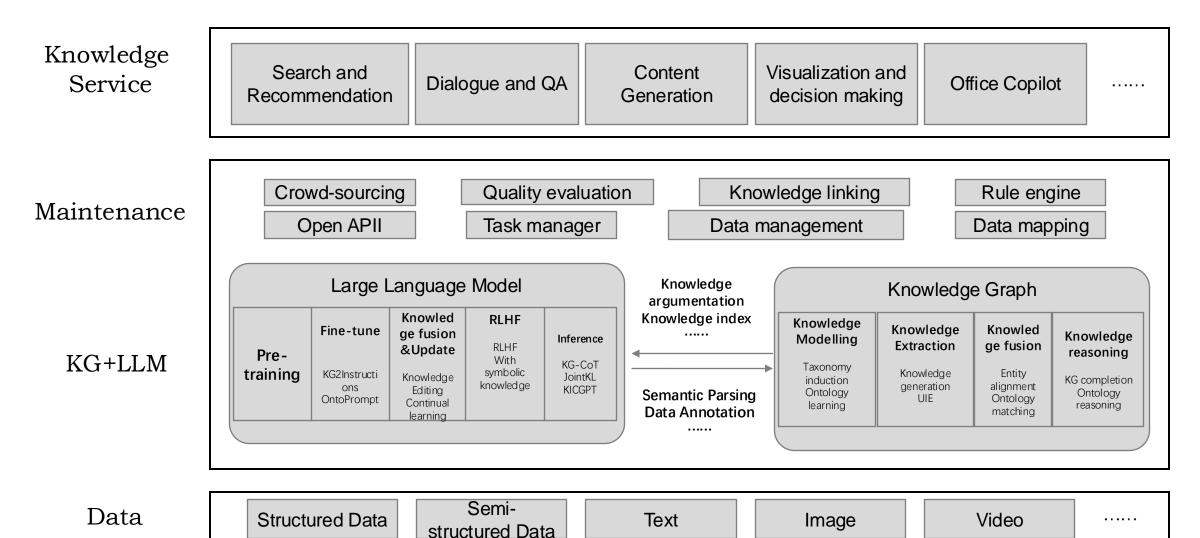
• Integrating the LLM, multifunctional toolbox, KG-based executor, and knowledge memory, and develop an iteration mechanism that autonomously selects the tool then updates the memory for reasoning over KG

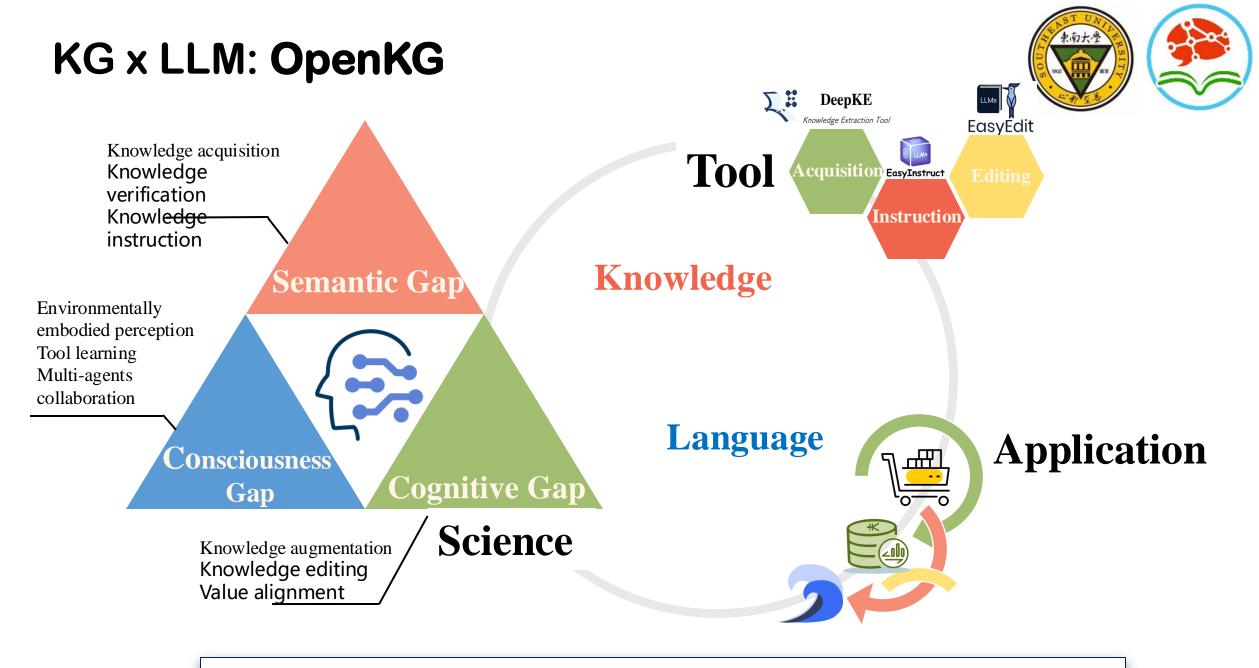


KG-Agent

KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Graph. Preprint 2024

KG x LLM: Knowledge Service Platform





Language as "form", knowledge as "heart", graph as "skeleton"

Introduction of KG & LLM
KG for LLM
LLM for KG
Integration of LLM & KG
Conclusion & Future Work

Conclusion

- KG for LLM
 - KG can enhance pre-training, instruction-tuining, RAG, ICL, fusion, update, validation of LLM
- LLM for KG
 - ✓ LLM can knowledge graph completion, extraction, fusion, reasoning and validation of KG
- Integration of LLM and KG
 - ✓ New agents can be designed
 - ✓ OpenKG: Language as "form", knowledge as "heart", graph as "skeleton"

Future Work

- KG for LLM
 - ✓ Effective and efficient learning of symbolic knowledge in KGs
 - ✓ Benchmarks generated by KGs to validate LLMs
 - ✓ Improving (interpretable) reasoning ability of LLM using KGs
- LLM for KG
 - ✓ Automating KG engineering pipeline using agent based LLM
 - $\checkmark\,$ Tool-augmented LLM for symbolic reasoning of KG
 - ✓ Enhancing Knowledge services based on KGs by LLM
- Integration of LLM and KG
 - ✓ Newly designed unified agent
 - ✓ Generalizable, trustable and stable knowledge services
 - ✓ Programmable knowledge engine

Thank you!

Email address: yongruichen@seu.edu.cn